Antarctic ice sheet

The Antarctic ice sheet is one of the two polar ice caps of the Earth. It covers about 98% of the Antarctic continent and is the largest single mass of ice on Earth. It covers an area of almost 14 million square km and contains 30 million cubic km of ice. That is, approximately 61 percent of all fresh water on the Earth is held in the Antarctic ice sheet, an amount equivalent to 70 m of water in the world's oceans. In East Antarctica, the ice sheet rests on a major land mass, but in West Antarctica the bed can extend to more than 2,500 m below sea level. The land in this area would be seabed if the ice sheet were not there.

The icing of Antarctica began with ice-rafting from middle Eocene times about 45.5 million years ago[2] and escalated inland widely during the Eocene-Oligocene extinction event about 34 million years ago. CO2 levels were then about 760 ppm[3] and had been decreasing from earlier levels in the thousands of ppm. Carbon dioxide decrease, with a tipping point of 600 ppm, was the primary agent forcing Antarctic glaciation.[4] The glaciation was favored by an interval when the Earth's orbit favored cool summers but Oxygen isotope ratio cycle marker changes were too large to be explained by Antarctic ice-sheet growth alone indicating an ice age of some size.[5] The opening of the Drake Passage may have played a role as well[6] though models of the changes suggest declining CO2 levels to have been more important.[7]

Ice enters the sheet through precipitation as snow. This snow is then compacted to form glacier ice which moves under gravity towards the coast. Most of it is carried to the coast by fast moving ice streams. The ice then passes into the ocean, often forming vast floating ice shelves. These shelves then melt or calve off to give icebergs that eventually melt.

If the transfer of the ice from the land to the sea is balanced by snow falling back on the land then there will be no net contribution to global sea levels. A 2002 analysis of NASA satellite data from 1979–1999 showed that while overall the land ice is decreasing, areas of Antarctica where sea ice was increasing outnumbered areas of decreasing sea ice roughly 2:1.[8] The general trend shows that a warming climate in the southern hemisphere would transport more moisture to Antarctica, causing the interior ice sheets to grow, while calving events along the coast will increase, causing these areas to shrink. A 2006 paper derived from satellite data, measures changes in the gravity of the ice mass, suggests that the total amount of ice in Antarctica has begun decreasing in the past few years.[9] Another recent study compared the ice leaving the ice sheet, by measuring the ice velocity and thickness along the coast, to the amount of snow accumulation over the continent. This found that the East Antarctic Ice Sheet was in balance but the West Antarctic Ice Sheet was losing mass. This was largely due to acceleration of ice streams such as Pine Island Glacier. These results agree closely with the gravity changes.[10][11]

According to a 2009 study, the continent-wide average surface temperature trend of Antarctica is positive and significant at >0.05°C/decade since 1957.[12][13][14][15] West Antarctica has warmed by more than 0.1°C/decade in the last 50 years, and this warming is strongest in winter and spring. Although this is partly offset by fall cooling in East Antarctica, this effect is restricted to the 1980s and 1990s.[12][13][14]

Antarctic sea ice anomalies have roughly followed the pattern of warming, with the greatest declines occurring off the coast of West Antarctica. East Antarctica sea ice has been increasing since 1978, though not at a statistically significant rate. The atmospheric warming has been directly linked to the recent mass losses in West Antarctica. This mass loss is more likely to be due to increased melting of the ice shelves because of changes in ocean circulation patterns (which themselves may be linked to atmospheric circulation changes that may also explain the warming trends in West Antarctica). Melting of the ice shelves in turn causes the ice streams to speed up.[16] The melting and disappearance of the floating ice shelves will only have a small effect on sea level, which is due to salinity differences.[17][18][19] The most important consequence of their increased melting is the speed up of the ice streams on land which are buttressed by these ice shelves.

See also

References

  1. ^ NASA (2007). "Two Decades of Temperature Change in Antarctica". Earth Observatory Newsroom. http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17838. Retrieved 2008-08-14.  NASA image by Robert Simmon, based on data from Joey Comiso, GSFC.
  2. ^ Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time Palaeogeography, palaeoclimatology, & palaeoecology ISSN 0031-0182, 1992, vol. 93, no1-2, pp. 85–112 (3 p.)
  3. ^ New CO2 data helps unlock the secrets of Antarctic formation September 13th, 2009
  4. ^ http://www.sciencedaily.com/releases/2011/12/111201174225.htm
  5. ^ Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean Nature 433, 53–57 (6 January 2005) | doi:10.1038/nature03135; Received 1 September 2004; Accepted 25 October 2004
  6. ^ Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity Geology February 1996 v. 24 no. 2 p. 163-166 doi: 10.1130/0091-7613(1996)​024
  7. ^ Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 Nature 421, 245–249 (16 January 2003) | doi:10.1038; Received 25 July 2002; Accepted 12 November 2002
  8. ^ Ramanujan, Krishna (2002-08-22). "Satellites Show Overall Increases in Antarctic Sea Ice Cover". Goddard Space Flight Center. http://www.gsfc.nasa.gov/topstory/20020820southseaice.html. Retrieved 2007-04-21. 
  9. ^ Velicogna, Isabella; Wahr, John; Scott, Jim (2006-03-02). Antarctic ice sheet losing mass, says University of Colorado study. University of Colorado at Boulder. http://www.eurekalert.org/pub_releases/2006-03/uoca-ais022806.php. Retrieved 2007-04-21. 
  10. ^ Rignot, E.; Bamber, J. L.; Van Den Broeke, M. R.; Davis, C.; Li, Y.; Van De Berg, W. J.; Van Meijgaard, E. (2008). "Recent Antarctic ice mass loss from radar interferometry and regional climate modelling". Nature Geoscience 1 (2): 106. doi:10.1038/ngeo102.  edit
  11. ^ Rignot, E. (2008). "Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data". Geophysical Research Letters 35 (12): L12505. Bibcode 2008GeoRL..3512505R. doi:10.1029/2008GL033365.  edit
  12. ^ a b Steig, Eric (2009-01-21). "Temperature in West Antarctica over the last 50 and 200 years". http://www2.umaine.edu/itase/content/Abstracts/Steig.pdf. Retrieved 2009-01-22. 
  13. ^ a b Steig, Eric. "Biography". http://www.ess.washington.edu/web/ess/people/faculty_bio/steig-bio.html. Retrieved 2009-01-22. 
  14. ^ a b Steig, E. J.; Schneider, D. P.; Rutherford, S. D.; Mann, M. E.; Comiso, J. C.; Shindell, D. T. (2009). "Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year". Nature 457 (7228): 459–462. doi:10.1038/nature07669. PMID 19158794.  edit
  15. ^ Ingham, Richard (2009-01-22). "Global warming hitting all of Antarctica". The Sydney Morning Herald. http://news.smh.com.au/breaking-news-world/global-warming-hitting-all-of-antarctica-scientists-20090122-7mul.html. Retrieved 2009-01-22. 
  16. ^ Payne, A. J.; Vieli, A.; Shepherd, A. P.; Wingham, D. J.; Rignot, E. (2004). "Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans". Geophysical Research Letters 31 (23): L23401. Bibcode 2004GeoRL..3123401P. doi:10.1029/2004GL021284.  edit
  17. ^ Peter Noerdlinger, PHYSORG.COM "Melting of Floating Ice Will Raise Sea Level"
  18. ^ Noerdlinger, P.D.; Brower, K.R. (July 2007). "The melting of floating ice raises the ocean level". Geophysical Journal International 170 (1): 145–150. doi:10.1111/j.1365-246X.2007.03472.x. 
  19. ^ Jenkins, A.; Holland, D. (August 2007). "Melting of floating ice and sea level rise". Geophysical Research Letters 34 (16): L16609. Bibcode 2007GeoRL..3416609J. doi:10.1029/2007GL030784.